Braidless Weights, Minimal Representatives and the Weyl Group Multiple Dirichlet Series

نویسنده

  • YUANQING CAI
چکیده

For a semisimple Lie algebra admitting a good enumeration, we prove a parameterization for the elements in its Weyl group. As an application, we give coordinate-free comparison between the crystal graph description (when it is known) and the Lie-theoretic description of the Weyl group multiple Dirichlet series in the stable range.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 2 Ju n 20 10 WEYL GROUP MULTIPLE DIRICHLET SERIES OF TYPE C

We develop the theory of “Weyl group multiple Dirichlet series” for root systems of type C. For an arbitrary root system of rank r and a positive integer n, these are Dirichlet series in r complex variables with analytic continuation and functional equations isomorphic to the associated Weyl group. In type C, they conjecturally arise from the Fourier-Whittaker coefficients of minimal parabolic ...

متن کامل

Weyl Group Multiple Dirichlet Series I

Given a root system Φ of rank r and a global field F containing the n-th roots of unity, it is possible to define a Weyl group multiple Dirichlet series whose coefficients are n-th order Gauss sums. It is a function of r complex variables, and it has meromorphic continuation to all of C, with functional equations forming a group isomorphic to the Weyl group of Φ. Weyl group multiple Dirichlet s...

متن کامل

Weyl Group Multiple Dirichlet

Abstract. A Weyl group multiple Dirichlet series is a Dirichlet series in several complex variables attached to a root system Φ. The number of variables equals the rank r of the root system, and the series satisfies a group of functional equations isomorphic to the Weyl group W of Φ. In this paper we construct a Weyl group multiple Dirichlet series over the rational function field using n order...

متن کامل

Weyl Group Multiple Dirichlet Series of Type A2

A Weyl group multiple Dirichlet series is a Dirichlet series in several complex variables attached to a root system Φ. The number of variables equals the rank r of the root system, and the series satisfies a group of functional equations isomorphic to the Weyl group W of Φ. In this paper we construct a Weyl group multiple Dirichlet series over the rational function field using n order Gauss sum...

متن کامل

m at h . N T ] 1 4 M ay 2 00 9 CONSTRUCTING WEYL GROUP MULTIPLE DIRICHLET SERIES

Let Φ be a reduced root system of rank r. A Weyl group multiple Dirichlet series for Φ is a Dirichlet series in r complex variables s1, . . . , sr, initially converging for Re(si) sufficiently large, that has meromorphic continuation to C and satisfies functional equations under the transformations of C corresponding to the Weyl group of Φ. A heuristic definition of such series was given in [BB...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017